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Abstract
Computer-aided optimization algorithms in structural engineering have historically focused on the
structural performance of generated forms, often resulting in the selection of a single ‘optimal’
solution. However, diversity of generated solutions is desirable when those solutions are shown to a
human user to choose from. Quality-Diversity (QD) search is an emerging field of Evolutionary
Computation which can automate the exploration of the solution space in engineering problems. QD
algorithms, such as MAP-Elites, operate by maintaining and expanding an archive of diverse
solutions, optimising for quality in local niches of a multidimensional design space. The generated
archive of solutions can help engineers gain a better overview of the solution space, illuminating
which designs are possible and their trade-offs. In this paper we apply Quality Diversity search to the
problem of designing shell structures. Since the design of shell structures comes with physical
constraints, we leverage a constrained optimization variant of the MAP-Elites algorithm,
FI-MAP-Elites. We implement our proposed methodology within the Rhino/Grasshopper environment
and use the Karamba FEA solver for all structural engineering calculations. We test our method on
case studies of parametric models of shell structures that feature varying complexity. Our experiments
investigate the algorithm’s ability to illuminate the solution space and generate feasible and high
quality solutions.

Keywords: evolutionary algorithm, evolutionary computation, quality diversity, optimisation, multi objective
optimisation, conceptual design, shell structures, spatial structures.

1. Introduction

A frequently encountered problem within the AEC industry is the design of efficient shell structures.
Such structures–in which architectural form is inextricably linked to structural behaviour and
performance–require a close collaboration between architect, structural engineer and other AEC
consultants to find a shape that is acceptable to all parties and their separate demands. Historically,
many of these shells were conceived as form-active structures, and thus their final shape was
ascertained through form-finding techniques–first physically [1],[2], then digitally [3]. These digital
simulations are remarkably flexible, and able to incorporate a range of physical input constraints, such
as ensuring structural efficiency (e.g. axial loading only) or geometric rationalisation (e.g. avoiding
panel warp). However, for a single set of inputs (materials, loading and support conditions)
form-finding algorithms only generate a singular solution, rather than a range of potential solutions.
As such, it can be difficult for the designer to evaluate potential trade-offs between the desired criteria
and propose new weightings of them.
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We see similar limitations in evolutionary computation (EC) algorithms, such as Divide-and-Conquer
or Hill-Climbing. These algorithms are Single Objective Optimisation (SOO) approaches, and as such
they too suffer from a difficulty in weighting and combining output values to achieve a well-balanced
fitness evaluation for the variants. More sophisticated EC approaches include Multi Objective
Optimisation (MOO) or Pareto optimisation algorithms, such as SPEA-2 and HypE. These MOO
algorithms have been implemented in AEC digital design toolkits for several years now [4],[5], and
allow substantially more detailed exploration of the solution space.

Quality Diversity (QD) search is a family of EC algorithms that simultaneously maintain the quality
and diversity of solutions [6] by rewarding divergence of the population according to some ad-hoc
measure of difference between the actual artefacts rather than the genotypic information. Quality can
be a secondary objective to this divergence [7], act as a constraint on minimal quality [8], or as a
survival criterion between similar artefacts [9]. Algorithms such as MAP-Elites can illuminate the
search space, maintaining and evolving in parallel different solutions in different behavioural niches
(i.e. with similar design characteristics orthogonal to quality). MAP-Elites and its variants has been a
popular algorithm for problems where the “optimal solution” is subjective, such as evolutionary art
[10] and game content generation [11].

This paper presents a constrained variant of the MAP-Elites algorithm for QD search and tests it in a
set of shell structure optimization tasks ranging from simple to complex. The FI-MAP-Elites
algorithm, proposed here, leverages two archives evolving in parallel: one archive of solutions that fail
a constraint on maximum allowed displacement, and another archive of solutions that satisfy this
constraint and search for optimal elastic energy of the structure. The algorithm is integrated into
Grasshopper and allows engineers to specify the structure of possible solutions and the dimensions
towards which FI-MAP-Elites should explore. Comparisons against a baseline SOO algorithm
available in Grasshopper show that the proposed constrained QD search algorithm produces far more
diverse solutions, while SOO typically converges towards a single type of solution.

2. General Methodology for Constrained Quality Diversity Search
Feasible-Infeasible Multidimensional Archives of Phenotypic Elites (FI-MAP-Elites) is a hybrid of the
MAP-Elites [11] and the FI-2Pop GA [13] algorithms. Its main goal is to combine the illumination
capabilities of the former with the constraint-solving capabilities of the latter. Its operation is
controlled by the following hyperparameters that are problem-specific: (1) Representation: refers to
how the algorithm stores the artefacts in a compact genotype [14]. (2) Initialization: refers to how the
initial population is formed. In many cases initialization of the genotype is as simple as generating a
random list of numbers. More complex representations, however, may require a more elaborate
scripted initialization [15]. (3) Variation: refers to the genetic operators applied while evolution is
carried out to produce offspring from selected individuals. While traditional EC operators include
recombination and mutation [16], FI-MAP-Elites only uses mutation of one individual. (4) Infeasible
fitness (Fi): measures how many constraints are failed by the solution and to which degree. The
infeasible population aims to minimise the distance to feasibility; to convert this into a maximisation
task, we consider that an infeasible fitness below a threshold (usually Fi < 1) means that the individual
is infeasible (i.e. at least one constraint is not satisfied). Ad-hoc heuristics are designed per constraint
and added together to form the infeasible fitness score. (5) Feasible fitness (Ff ): is a problem-specific
measure of the desirable property of the final artefact. Feasible fitness is only calculated if the
individual is feasible, as failed constraints in some problems render calculating the feasible fitness
impossible [17]. (6) Behaviour characterizations (BCs): refer to quantifiable characteristics of the
artefact. BCs are orthogonal to quality and artefacts of both high or low BC scores should be desirable.
These BCs define the dimensions of exploration and diversity and should be of interest to the designer.
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While most MAP-Elites implementations use two BCs, the algorithm can operate with any number of
BCs but this may impact the computational cost of evolutionary search.

Figure 1. Functional diagram showcasing the operation of the FI-MAP-Elites algorithm, for two BCs.

The FI-MAP-Elites [15] algorithm, visualised in Fig. 1, maintains two separate archives for feasible
and infeasible solutions, organised in an n-dimensional grid based on the problem's BCs. Each grid
cell contains a single elite with specific BC values. An initial population seeds the archives according
to feasibility. The algorithm randomly selects an individual, mutates and evaluates it, and places it in
the proper archive and cell based on feasibility and BCs. Offspring replace current elites if their fitness
is higher. Through repeated iterations, the algorithm fills the archives with solutions that approach
locally maximum fitness, providing a diverse set of fit and feasible solutions for users.

3. Applied Methodology & Experiment Protocol
To efficiently test FI-MAP-Elites in shell structure design tasks, a series of parametric shell models
were defined in Rhino’s visual programming interface, Grasshopper, based on SubDivision (SubD)
surfaces. SubD surfaces have the advantage of being derived from a low polygon control mesh that is
easy to manipulate through adjustment of its vertices (control points). This gives them geometric
flexibility and makes them suitable for representing a wide range of forms. Furthermore, the resulting
surfaces are generated through iterative Catmull-Clark subdivisions [18] of the input mesh which
guarantees a smooth, continuous curvature. SubD-based approaches have been successfully utilised by
AKT II on a series of built and unrealised projects over the last decade [19],[20].

3.1 Algorithmic Parameters
Based on Section 2, there are several problem-specific hyperparameters to the algorithm. We elaborate
the parameters for the shell use case here.

● Representation: The parametric shell model is manually defined by the designer in
Rhino/Grasshopper [21]. This includes a definition of a SubD surface, several constraints on
its control points’ variability, as well as a number of control parameters that affect the points’
movement along specified vectors. Any point on the SubD control polygon selected as a
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support by the designer is defined as ‘creased’ to ensure that the point that is constrained
exists on the smooth shape. The genetic algorithm only stores (and manipulates) the values of
the control parameters.

● Initialization: When initialising the population for evolution, control parameters are assigned
a random value within a designer-specified value range.

● Variation: Variation occurs solely through the mutation operator that iterates over all the
control parameters defined in the model and changes their values according to two parameters:
Max Step Size (i.e. the maximum distortion allowed per mutation step) andMutation Rate (i.e.
the probability that this control parameter will be changed).

● Infeasible fitness: The only constraint in this use case is an upper limit on displacement (d),
i.e. the distance between the point in the original model and the deformed model. The upper
limit on displacement is specified by the designer (Cd ). Equation (1) calculates the infeasible
fitness for this problem (Fi ), which is bound in the value range of [0,1] and feasible
individuals always have Fi = 1.

● Feasible fitness: For feasible individuals, quality is ascertained based on the total elastic
energy (U) of the structure. The value for U measures how much energy is stored in the
structure based on its elastic deformation. The feasible fitness (Ff ) is only calculated on
individuals that satisfy the constraints (d≤Cd ); the score of Ff =0 for infeasible individuals is
calculated only for the baseline single-objective algorithm in the experiments of this paper.

● Behaviour characterizations (BCs): Two formulas based on control point coordinates are
explored as BCs in this work: (a) Edge Point Coordinate Average, as the average coordinate
value of a set of parametric points on a series of edges in the SubD geometry (either X, Y, or
Z, determined by the user); (b) Edge Point Coordinates Deviation, calculated as the difference
between the average value and the coordinate (X, Y, or Z, determined by the user) of each
point on a series of edges in the SubD geometry, divided by the number of points.

3.2 Rhino Implementation
In order to apply FI-MAP-Elites to structural engineering problems, we exploit the parametric design
capabilities of the Rhino/Grasshopper design environment. Within this environment, we developed a
set of components which allow the structural engineer to (1) define the structural parametric model,
(2) select the algorithmic parameters and (3) run the FI-MAP-Elites algorithm and generate an
optimised (in terms of quality and diversity) set of variations of the parametric model.
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Figure 2. Grasshopper toolbars for the FI-MAP-Elites implementation of shell design.

Customization of the algorithm is done through parameters (on the point constraints, its variation
range, and parameters of the SubD model) and through details on the physics model and BC
characterizations (see Fig. 2 for a summary of the components available). The solver toolbars provide
the settings and components to run the process, along with tools to retrieve results. The components
can be combined to produce a pipeline to initialise and evaluate solutions.

As soon as the algorithm’s operation is over, a Grasshopper component outputs the data of all elites in
both archives, as well as their positions on the archive’s grid (based on their BCs). Each one of the
generated variations includes various meta-information, including: (1) its Karamba [22] model, (2) its
Rhino geometry, (3) its genome (parameter values), (4) its elastic energy and (5) its displacement
values. Based on these outputs, the archive’s contents can be visualised in Rhino’s viewport, in a
customised manner. Fig. 6. illustrates an example of such a visualisation of the feasible archive, which
includes a visual (by vertex colours) indication of the parametric model’s fitness.

3.3 Hyperparameters and Baseline Algorithms
For all experiments with FI-MAP-Elites in this paper, we use an initial population of 100 random
individuals, a mutation rate of 50% and mutation step of 20%, a grid of elites of 16 by 16 (BC1 by
BC2) for both feasible and infeasible archives, and results are collected after 50,000 evaluations.

As a baseline to test the performance of FI-MAP-Elites, we use a single-objective optimizer (SOO) of
the Galapagos library within Grasshopper. This simple algorithm aims to maximise a single-objective
fitness (Fb) computed as the average of the infeasible and feasible fitness; see Eq. (3). Therefore, it
overlooks diversity dimensions but tackles constrained optimization.

The evolutionary solver of the Galapagos optimizer within Grasshopper is used for this baseline, with
the following settings: a population of 256 individuals, an initial boost of 1 (the initial population size
is 256), an elitism of 5% (the 13 fittest individuals are retained across generations) and an inbreeding
rate of 50% (slightly favours the selection of similar parents during crossover). The population
evolves for a number of generations resulting in a comparable number of evaluations as
FI-MAP-Elites. We collect solutions from the final population on the last generation to derive SOO
performance metrics.

3.4 Hypothesis and Performance Metrics
Our hypotheses in the experiments described in Chapter 5 can be summarised as follows:

● The two-population approach of FI-MAP Elites will discover more feasible solutions faster.
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● Evolution will focus on the feasible population earlier and lead to higher quality solutions in
FI-MAP-Elites compared to single-population approaches.

● As a QD algorithm the variety of solutions (in terms of the chosen BCs) will be higher.
● It is expected that more high-quality solutions that are structurally different will emerge from

the QD search process that favours local competition within the same behavioural niche.

Following the literature in QD search [9], we evaluate the following metrics: (a) maximum
performance, as the lowest elastic energy (Umin) score and lowest displacement (dmin) among feasible
individuals of the SOO population or the feasible archive, (b) coverage, as the ratio of all cells in the
feature map that are occupied by feasible solutions1, (c) QD score, as the sum of feasible fitness scores
among all elites in the feasible archive (of feasible individuals in the SOO population). The maximum
performance assesses whether at least one solution is well-performing, while coverage assesses
whether a large behavioural variety of solutions is found. Finally, the QD score assesses a combination
of the above, with higher scores achieved when the algorithm produces many behaviourally diverse
individuals of high quality. In addition, we measure the fitness deviation (σU and σd) as the standard
deviation in terms of the elastic energy and displacement (respectively) of all feasible solutions. This
measure captures the uniformity of designs when exploring along different BCs.

Moreover, we assess constraint satisfaction and constraint optimization performance through the
following metrics: (a) feasible ratio, as the ratio of solutions that satisfy all constraints against all
solutions in the final population(s); (b) infeasible coverage, as the ratio of all possible cells in the
feature map that are occupied by infeasible solutions (i.e. the infeasible archive for FI-MAP-Elites).

4. Results
In order to evaluate the proposed algorithm’s performance, we use three different test cases: two
variants of a simple test case, and a complex test case comparable to real-world engineering problems.

4.1 Simple Test Case
Fig. 3 shows the parametric surface model of the simple test case, based on a square SubD surface
subdivided into 9 patches and 16 points. The algorithm varies the height of each point in order to
optimise the shape. Each point is given a variability in Z-direction from 0 to 5, which is represented by
the green arrows at each control point.

Figure 3: The square base test case, with the height variability range (left), and the BCs calculated based on the
average height of the centre points (blue dots in right image) and height difference between arches (red dots in
right image).

Diversity dimensions (BCs) focus on two target areas, namely the central region and the arches (blue
and red dots, respectively in Fig. 3). BC1 is taken as the average Z coordinate of the edges of the

1 For SOO, all solutions are processed and only feasible ones are placed on the feasible feature map along the
two BCs of FI-MAP-Elites (with only the fittest solution retained in each cell).
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central face, to capture the height at the middle of the shell. BC2 is the Z coordinate deviation between
the midpoints of the side arches, in order to capture asymmetric aspects of an otherwise symmetrical
problem. High performing solutions for this form are largely known beforehand, so these two case
studies act as benchmarks to ensure that the solutions provided by the QD algorithm are as expected.

Experiments conducted with this structure assume a base of 16m by 16m, made of grade C16/20
concrete, and a thickness of 7cm, a mesh resolution of 2 subdivisions, and applied loads of 2kN/m2.
For the FI-MAP-Elites hyperparameters, we use an initial population of 100 random individuals, a
mutation rate of 50% and mutation step of 20%, a grid of elites of 16 by 16 (BC1 by BC2) for both
feasible and infeasible archives, and a total of 105 iterations of parent selection. The upper threshold
for displacement (Cd) is set to 5cm.

We test two versions of this simple test case (Case 1 and Case 2). In both cases an identical input
geometry is used, but they are given two different support constraints. Case 1 has all translations (X,
Y, Z) constrained at the four corner points, while Case 2 has the X direction free. This means that Case
1 can transfer horizontal forces in two directions to the supports, while Case 2 can only transfer the
horizontal forces in one direction. This should force the same patch into two different structural
behaviours, thereby rendering different resulting shapes in the two maps.

Table 1. Simple Test Case: Comparing the final archive of QD with the final population of SOO, for Case 1 and
Case 2. Results are averaged across 10 experiment repetitions. Error signifies a confidence interval of 95%.

Case 1 Case 2
FI-MAP-Elites SOO FI-MAP-Elites SOO

Feasible Coverage 94.3% ± 2.1% 0.6% ± 0.3% 88.9% ± 0.6% 0.7% ± 0.1%
Feasible QD-Score 110.37 ± 1.20 1.12 ± 0.51 75.32 ± 0.91 0.44 ± 0.11
Feasible Umin 0.38 ± 0.00 0.34 ± 0.01 0.72 ± 0.02 3.01 ± 0.74
Feasible σU 1.16 ± 0.08 0.00 ± 0.00 1.82 ± 0.04 0.02 ± 0.01
Feasible dmin 0.37 ± 0.04 0.13 ± 0.02 0.44 ± 0.06 2.08 ± 0.35
Feasible σd 0.62 ± 0.03 0.03 ± 0.01 0.76 ± 0.02 0.03 ± 0.01
Feasible Ratio 48.5% ± 0.6% 100.0% ± 0.0% 47.1% ± 0.2% 100.0% ± 0.0%
Infeasible Coverage 100.0% ± 0.0% 0.0% ± 0.0% 99.8% ± 0.3% 0.0% ± 0.0%

Table 1 shows the different performance metrics (see Section 3.4) for both Case 1 and Case 2. Results
are averaged from 10 independent runs of both FI-MAP-Elites and SOO per case. A first observation
for both cases is that the final SOO population contains exclusively feasible individuals, and those
individuals have almost identical scores in elastic energy among them (very low σU). Moreover, based
on the very low coverage when these solutions are mapped in the FI-MAP-Elites feature map, the
solutions are geometrically very similar. Unsurprisingly, FI-MAP-Elites is designed to explore the BCs
specified by the designer and reaches very high scores in both feasible and infeasible coverage. Case 2
seems to be more challenging for EC to optimise, as evidenced by the much higher elastic energy in
the best solution for both SOO and FI-MAP-Elites. While for Case 1 the SOO manages to converge
towards a solution with a U score lower than the best U score found in FI-MAP-Elites, this is not true
in Case 2. We presume that SOO converges early to a local optimum and does not explore the search
space enough in order to find a better solution. The QD algorithm unsurprisingly does explore along
the BCs and thus finds (many) better solutions. However, both the lower coverage and lower QD-score
of FI-MAP-Elites compared to Case 1 shows that the freedom of changing the corner points’
coordinates makes the problem more difficult.

Fig. 4 shows how the feature map of some indicative runs of FI-MAP-Elites differ between Case 1 and
Case 2. It is evident that better solutions (with lower elastic energy) can be found in different parts of
the design space (for these BCs), thus indicating different trade-offs between geometric designs. It can
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be seen that the change in support conditions leads to different solutions for each location in the map,
as the shapes with the lowest fitness go from 2-directional compression shells in Case 1 to single-span
shell topologies in Case 2. This can be seen as the fittest solutions in Case 1 are the ones with a high
middle height, regardless of symmetry, whereas in Case 2 2-axis symmetric solutions are no longer
possible and the fittest individuals have moved to the spots with high single-axis symmetry (barrel
vault forms). We also see a different class of fit individuals in the middle of the map as the lower
middle height of these shells allows them to develop some synclastic curvature, which further
increases stiffness.

Figure 4: Indicative archives of feasible solutions from the first run of FI-MAP-Elites for Test Case 1 (left) and
Test Case 2 (right), collected after 50,000 evaluations. Yellow shapes have higher feasible fitness.

4.2 Complex Test Case
The complex case study focuses on a more detailed four-arch vault shell which is initially mirror
symmetrical in the XZ and YZ planes (as seen in Fig. 5). This form comprises 16 patches, and has 29
control points adjusted by the optimisation algorithms. The shell has a base boundary of 20m by 10m,
is formed in grade C16/20 concrete with a thickness of 10cm, a mesh resolution of 3 subdivisions, and
only self-weight (no applied loads). The upper threshold for displacement (Cd) is set to 6cm.

Diversity is defined using two Edge Point Coordinates Deviation BCs: BC1 is the Z-height deviation
between midpoints of the four external arches, BC2 is the Z-height deviation between midpoints of the
four axial iso-curves that meet at the centre of the vault.

Figure 5: Inputs for complex case study: control mesh and control point variation vectors (left, vectors in green),
and resulting smoothed mesh that is structurally analysed (right).

Table 3 shows the performance metrics on the complex test case, averaged from 8 independent runs.
The increased complexity of this test-case has had an impact on the feasible coverage of the
FI-MAP-Elites approach. However, more than half of the examined domain has been covered with
feasible solutions in this approach (64%). On the other hand, the SOO’s feasible coverage remains at a
very low value, suggesting that the solutions discovered in SOO are very similar to each other in every
run. Furthermore, the feasible population discovered by the QD approach exhibited better performance
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in terms of both elastic energy and displacement, in comparison to SOO. This observation is aligned
with the general notion that diversification in evolutionary approaches is a means of achieving better
fitness.

Table 3. Complex Test Case: Comparing the final archive of QD with the last population of SOO. Error
signifies a confidence interval of 95%. Displacement (d) is reported in centimetres.

FI-MAP-Elites SOO
Feasible Coverage 66.9% ± 1.5% 0.8% ± 0.3%
Feasible QD-Score 110.66 ± 2.18 1.46 ± 0.56
Feasible Umin 0.34 ± 0.01 0.45 ± 0.02
Feasible σU 0.21 ± 0.02 0.01 ± 0.00
Feasible dmin 0.15 ± 0.01 0.27 ± 0.02
Feasible σd 0.11 ± 0.01 0.01 ± 0.00
Feasible Ratio 49.5% ± 0.4% 100.0% ± 0.0%
Infeasible Coverage 68.3% ± 1.7% 0.0% ± 0.0%

Figure 6: Visualisation of all feasible solutions found in a single run of the FI-MAP-Elites algorithm on the
Complex Test Case. Meshes in yellow have a higher fitness (i.e. lower elastic energy)

As seen in Fig. 6, the highest-fitness solutions are concentrated near the regions of low deviation for
both sets of control points. Furthermore, we observe a clear gradient that starts from this point and
diminishes the further away we move from it. This observation is aligned with an engineering intuition
that more symmetric solutions will exhibit better structural properties. Despite this fact, however, it is
worth noting that all presented solutions are feasible and locally optimised, rendering them potential
candidates for further investigation.

Finally, in Fig. 7 we present the best-found individual solutions of the FI-MAP-Elites and SOO
approaches, for a detailed examination. In these examples the QD algorithm found a lower
deformation solution than the SOO. The QD optimal solution has sharper curvature at the two supports
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[20]in the short-span axis, but achieves a shallower angle into the two long-axis supports. As these
results suggest, the best range of solutions for high-dimensional problems like this can often not be
easily intuited by the engineer, unlike the simple test cases.

Figure 7: Best solution found by the SOO (left) and by FI-MAP-Elites (middle), with blue regions representing
high displacement. Both solutions overlaid (right) with blue colour for FI-MAP-Elites and red colour for SOO,

to highlight their difference.6. Discussion

This paper introduces a constrained Quality-Diversity evolutionary approach in structural engineering
and tests it on the problem of designing shell surfaces. Unlike traditional evolutionary optimization,
which converges towards similar solutions, our method produces many diverse solutions and improves
them throughout evolution. It uses a two-population approach to explore the solution space efficiently
and discover feasible solutions. It produces many individuals, with a high coverage of the
designer-specified behavioural space of geometric properties. The produced visualisation of all
possible layouts can provide important feedback to engineers and inspire future iterations. As shown in
some use-case example shell structures, this approach can offer many good alternatives for an engineer
to choose from, compared to the single design produced by single-objective evolution.

The experiment setup included three test cases: two variants of a simple problem and a more complex
problem closer to the real-world structural engineering problems encountered by AKT II [19],[20]. We
compared the output of FI-MAP-Elites against designs collected from a traditional single-objective
optimization (SOO) method available to all engineers through the Galapagos optimizer (in
Rhino/Grasshopper). While the objective function included both the design goal and the constraints,
through a form of fitness penalty typical in constrained optimization [17], other evolutionary
approaches may perform differently. For instance, a two-population approach such as FI-2pop GA is
expected to find feasible individuals even in the complex case study, where SOO struggled. Moreover,
traditional genetic diversity preservation mechanisms such as the Fitness Uniform Selection Strategy
[23] could also lead to more diverse results. Finally, a multi-objective approach [24] where the BCs
are used as objectives alongside the SOO objective function (Fb) may lead to a more diverse
population. On the other hand, since the best solutions were found at specific BC coordinates with low
BC scores, optimising towards high BCs may not lead to any improvements at a higher computation
cost. Such more complex baselines will be explored in future work, where more complex structural
engineering problems will be tested with FI-MAP-Elites.

Results of FI-MAP-Elites as a method of illuminating the design space and generating many good
alternatives is promising for the structural engineering test cases, including the complex one which is
close to real-world problems faced by professionals. However, there are many other problems within
the AEC domain that could benefit from FI-MAP-Elites that should be explored in future work.
Preliminary studies in illuminating the space of stick models for structural engineers with
FI-MAP-Elites [25] have shown that the method is valuable for simple test cases but does not scale for
more complex problems due to the additional effort for designers in defining the entire possibility
space. The FI-MAP-Elites has also been tested for MEP engineering towards designing ventilation
shafts [25], operating under strict design spaces provided by the designers; this allows designers to
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ensure that solutions satisfy their ad-hoc constraints but limits the potential of QD search to provide
truly surprising solutions to the designers. Beyond testing FI-MAP-Elites in other engineering tasks, a
more ambitious avenue for future work is testing the output of the algorithm (e.g. the feature maps of
Fig. 4) in real-world, everyday workflows of a professional setting and their applicability as
inspiration for engineers, for communicating between disciplines (e.g. showing a feature map of
alternatives to other AEC stakeholders, such as architects), and for communicating with clients. This
ambitious direction of inquiry would shed more light on the potential of Quality-Diversity search and
the improvements needed to the algorithm, visualisation, explainability [26], and tools (e.g. Rhino
plugin).

5. Conclusions
This paper presented a novel approach to structural engineering, testing a new algorithm that takes
advantage of recent advances in constrained optimization and quality-diversity (QD) evolutionary
search. The method shows promise in both simple and complex test cases and can produce a range of
geometrically diverse high quality solutions, which can be beneficial during conceptualization stages
and when exploring alternatives with different stakeholders. The algorithm is integrated into the
Grasshopper visual programming environment within Rhino, which makes it both easily accessible
and customizable by engineers, and also provides tools to intuitively visualise and inspect all
generated solutions. Compared to a traditional single-objective optimization method currently
available in Rhino, our constrained QD approach can find feasible solutions more easily and produce
far more viable alternatives, compared with a single optimum that the single-objective approach
converges to. Future work will explore converting FI-MAP-Elites into a plugin available for everyone
via online repositories (e.g. food4rhino.com) and assessing its applicability further in everyday
structural engineering workflows.
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